Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vasc Access ; : 11297298221095994, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773955

RESUMO

BACKGROUND: The growing size of the end stage renal disease (ESRD) population highlights the need for effective dialysis access. Exhausted native vascular access options have led to increased use of catheters and prosthetic shunts, which are both associated with high risks of access failure and infection. Emerging alternatives include tissue-engineered vascular grafts (TEVG). Here we present the endpoint results for 10 ESRD patients with the scaffold-free tissue-engineered vascular access produced from sheets of extracellular matrix produced in vitro by human cells in culture. METHODS: Grafts were implanted as arteriovenous shunts in 10 ESRD patients with a complex history of access failure. Follow-up included ultrasound control of graft morphology and function, dialysis efficiency, access failure, intervention rate, as well as immunohistochemical analysis of graft structure. RESULTS: One patient died of unrelated causes and three shunts failed to become useable access grafts during the 3-month maturation phase. The 12-month primary and secondary patency for the other six shunts was 86%. Survival of six shunts functioning as the vascular access was 22 ± 12 months with longest primary patency of 38.6 months. The dialysis event rate of 3.34 per patient-year decreased significantly with the use of this TEVG to 0.67. CONCLUSIONS: This living autologous tissue-engineered vascular graft seems to be an alternative to synthetic vascular access options, exhibiting advantages of native arteriovenous fistula.

2.
J Vasc Access ; 12(1): 67-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21360466

RESUMO

Previously we reported on the mid- to long-term follow-up in the first clinical trial to use a completely autologous tissue-engineered graft in the high pressure circulation. In these early studies, living grafts were built from autologous fibroblasts and endothelial cells obtained from small skin and vein biopsies. The graft was assembled using a technique called tissue-engineering by self-assembly (TESA), where robust conduits were grown without support from exogenous biomaterials or synthetic scaffolding. One limitation with this earlier work was the long lead times required to build the completely autologous vascular graft. Here we report the first implant of a frozen, devitalized, completely autologous Lifeline™ vascular graft. In a departure from previous studies, the entire fibroblast layer, which provides the mechanical backbone of the graft, was air-dried then stored at -80°C until shortly before implant. Five days prior to implant, the devitalized conduit was rehydrated, and its lumen was seeded with living autologous endothelial cells to provide an antithrombogenic lining. The graft was implanted as an arteriovenous shunt between the brachial artery and the axillary vein in a patient who was dependent upon a semipermanent dialysis catheter placed in the femoral vein. Eight weeks postoperatively, the graft functions without complication. This strategy of preemptive skin and vein biopsy and cold-preserving autologous tissue allows the immediate availability of an autologous arteriovenous fistula, and is an important step forward in our strategy to provide allogeneic tissue-engineered grafts available "off-the-shelf".


Assuntos
Derivação Arteriovenosa Cirúrgica , Veia Axilar/cirurgia , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artéria Braquial/cirurgia , Criopreservação , Hemodiluição , Falência Renal Crônica/terapia , Engenharia Tecidual , Idoso , Veia Axilar/diagnóstico por imagem , Artéria Braquial/diagnóstico por imagem , Humanos , Masculino , Desenho de Prótese , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transplante Autólogo , Resultado do Tratamento , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...